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Abstract In Saccharomyces cerevisiae, an endopolyga-

lacturonase encoded by the PGL1 gene catalyzes the

random hydrolysis of the a-1,4 glycosidic linkages in

polygalacturonic acid. To study the regulation of the

PGL1 gene, we constructed a reporter vector containing

the lacZ gene under the control of PGL1 promoter. Sur-

prisingly, when Escherichia coli DH5a was transformed

by this vector, cells harboring the constructed plasmid

produced blue colonies. Sequence analysis of this pro-

moter revealed that E. coli consensus sequences required

to express an in-frame lacZ alpha product were present.

We next decided to investigate how the PGL1 promoter is

regulated in E. coli compared to yeast. In this study, we

examined the modulation of the PGL1 promoter in E. coli,

and the results indicated that its activity is greatly induced

by saturated digalacturonic acid and is indirectly regu-

lated by the transcriptional regulators the 2-keto-3-de-

oxygluconate repressor. Moreover, PGL1 expression is

enhanced under aerobic conditions. We found that

b-galactosidase activity in E. coli could reach 180 units,

which is 40-fold greater than the activity produced in S.

cerevisiae, and greater than recombinant protein expres-

sion previously reported by other researchers. We thus

demonstrate that this vector can be considered as a dual

expression plasmid for both E. coli and S. cerevisiae

hosts. So far, no modulation of endoPG promoters

expressed in E. coli has been reported.
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Introduction

Pectin is a major constituent of plant cell walls, mainly

composed of D-galacturonic acid residues, either esteri-

fied or not and joined by a-1,4-linkages, forming

homogalacturonan chains. In both bacterial and fungal

pectin-degrading systems, the enzymatic hydrolysis of

pectin involves the action of pectinases. Among these

enzymes, endopolygalacturonase (endoPG; EC.3.2.1.15)

hydrolyzes the a-1,4-glycosidic bonds between two non-

methylated galacturonic acid (GA) residues. Polygalac-

turonic acid (PGA) hydrolysis products consist mainly of

digalacturonic acid (DGA) and highly soluble oligosac-

charides [4]. Pectinases have a share of 25% in the global

sales of food enzymes because they are relevant in

numerous biotechnological applications such as in fruit

juice extraction and its clarification, scouring of cotton,

degumming of plant fibers, waste water treatment, veg-

etable oil extraction, tea and coffee fermentations,

bleaching of paper, in poultry feed additives, and in

alcoholic beverages and food [27, 40]. Otherwise, anal-

ysis of expression has shown that the PGL1p activity by

degradation of pectin could play another function. Thus,

it was reported that the PGL1 gene was a target of the

MAPK regulatory pathway and was also required in

pseudohyphae development [30] and therefore involved

in plant pathogenesis [14, 15, 18].
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Until now, many Saccharomyces cerevisiae strains

screened for their ability to produce endoPG have been

deficient or have produced a low activity of this enzyme

[11]. On the other hand, when the PGL1 ORF was isolated

under its own promoter, endoPG activity was hardly

detectable [16] by conventional methods [33, 37]. To

bypass this problem and to improve expression efficiency,

the PGL1 ORF was placed under the control of a strong

promoter [3, 17, 20]. These latter approaches are used to

get a sufficient amount of enzyme to study its properties

[2, 12] or simply to produce it on an industrial scale. This

production can be justified by the fact that when pectolytic

yeasts are used directly under winemaking conditions, the

actual composition of the obtained wines was only spar-

ingly altered [10, 46]. These slight changes in aroma profile

according to us were due to the high glucose concentration

of the musts that repress the biosynthesis of the enzyme

during the process.

We previously reported that the S. cerevisiae SCPP

strain is the only yeast strain to express a high level of

endoPG activity [11], and that the S. cerevisiae X2180

strain produces a low basal activity despite possessing an

intact PGL1 gene. The main difference in the 50 non-coding

sequences of the two strains is the insertion of delta Ty2

transposon in the intergenic DAL5-PGL1 fragment, which

regulates expression of the PGL1 ORF in S. cerevisiae

[16]. It was suggested [22] that endoPG activity in different

S. cerevisiae strains is modulated at the transcriptional

level and not by the structural gene. Later, this hypothesis

was confirmed by works showing that the PGL1 gene was

found not to be regulated by sequence difference in the

ORF but by the transcriptional level of the gene [28, 29].

Some regulatory mechanisms of the bacterium Erwinia

chrysanthemi for pectinases biosynthesis are also con-

served in E. coli [21, 42]. Thus, the five pel (Pectate lyases

encoded by the five genes pelA-E) transferred in a heter-

ologous host E. coli are affected like in E. chrysanthemi by

growth phase, catabolite repression, and anaerobic growth

conditions. They also are induced in the presence of

galacturonate, a sugar whose catabolism leads to the forma-

tion of 2-keto-3-deoxygluconate (KDG), the inducer of pel

transcription in E. chrysanthemi [21]. All genes involved in

pectin degradation are specifically controlled by the 2-keto-

3-deoxygluconate repressor (KdgR) and are induced by the

pectin catabolic product, KDG. The regulation of pel

expression by temperature or nitrogen starvation, observed

in E. chrysanthemi, was not conserved in E. coli, sug-

gesting that the mechanisms responsible for these regula-

tions are specific to E. chrysanthemi [21].

The present report is the first to identify the possible

origin of the gene encoding endoPG from bacteria to yeasts

on the basis of the promoter structure and a comparison of

gene expression in E. coli and S. cerevisiae using a lacZ

reporter; and to verify whether physiological regulation

taking place in S. cerevisiae is conserved in E. coli.

Materials and methods

Plasmid construction

Intergenic DAL5/PGL1 DNA fragments (Fig. 1a) were

generated by PCR amplification using the Pwo DNA

polymerase (Eurogentec Seraing, Belgium) with genomic

DNA using the S. cerevisiae X2180-1B strain as a template

and pgprombam (50-GGGGATCCTGAAGAAACAGAGA

ATTTAGAG-30) and pgpromxba (50-AAT CTAGAAGAA

ATCATTGCGTTTGTCAATCAA-30) primers. Purified

and BamHI ± XbaI digested PCR products were ligated to

the YEp357 vector [35] linearized with XbaI and BamHI

using T4 DNA ligase (Biolabs New England, Evry,

France). The ligation mixture contained a DNA vector ratio

of 10:1 and was carried out overnight at 16�C. Ligation

products were used to transform E. coli DH5a. Plasmids

were extracted from positive E. coli clones and used to

transform the S. cerevisiae MATa, ura3-D, trp1-4 strain for

measuring b-galactosidase activity. Recombinant YEppgX

plasmids were verified by sequencing (Eurogentec, Sera-

ing, Belgium).

Fig. 1 Construction of the YEppgX plasmid. a The putative PGL1
regulatory region (DAL5/PGL1) corresponds to the region bracketed

by the two black arrows obtained after PCR using the primers

pgprombam and pgpromxba (dark red arrows) was ligated to plasmid

YEp357 to construct plasmid YEppgX (b) (colour figure online)
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Strains and plasmid

The YEp357: 2l-URA3 plasmid and yeast/E. coli shuttle

vector were as previously described [35]. The S. cerevisiae

X2180-1B (MATa SUC2 mal mel gal2 CUP1) strain was

obtained from the Yeast Genetic Stock Center and used to

amplify the DAL5/PGL1 intergenic region containing the

PGL1 promoter. E. coli DH5a [supE44 hsdR17 recA1

endA1 gyrA thi-1 k- relA1 D(lacIZYA-argF) U169 deoR

(U80dlacZD(lacZ)M15)] (Bethesda Research Laboratories,

Gaithersburg, MD, USA) was used as host for cloning and

for b-galactosidase assays. S. cerevisiae MATa, ura3-D,

trp1-4, a derivative of FL100 (ATCC 28383), was used for

the b-galactosidase assays after transformation by the

YEppgX plasmid.

Transformation

Escherichia coli DH5a and S. cerevisiae MATa transfor-

mations were performed, respectively, according the cited

methods [7, 8].

Media and growth conditions

Transformed E. coli strains were grown in M9 minimum

medium (15 g/l Na2HPO4, 12 H2O; 3 g/l KH2PO4; 0.5 g/l

NaCl; 1 g/l NH4Cl after sterilization at 120�C during

20 min, we added glucose 2 g/l; B1 vitamin 0.002 g/l,

MgSO4 0.120 g/l). S. cerevisiae [YEppgX] was grown in

SD medium (6.7 g/l yeast nitrogen base without amino

acids; DIFCO, Detroit, MI, USA; 20 g/l glucose, supple-

mented with tryptophan). For experiments, media were

supplemented with varying different concentrations (see

text for details) of GA, DGA, or PGA (Sigma-Aldrich,

Saint Quentin, France). Yeast strains were grown at 30�C

and E. coli at 37�C. Aerobic conditions were obtained by

shaking at 150 rpm.

b-Galactosidase assays

Yeast b-galactosidase activity was measured using the

appropriate method [24] and bacterial b-galactosidase

activity was measured using the Miller method [32].

Transformed strains were grown in appropriated media

(M9 or SD) supplemented with different concentrations of

GA, DGA, or PGA (with \5% esterification) at different

concentrations (see text for details). Activities are given in

Miller units (U) as defined previously [24] and are aver-

aged data from at least three experiments. Statistical sig-

nificance was calculated according to Student’s table. Data

are expressed as the mean values ± standard deviation. In

the equation, the specific activity is a proportional rela-

tionship between the total activity and the biomass (rep-

resented by the A600), normalized to a standard sample.

Results

Analysis of the PGL1 promoter

We identified the A nucleotide at position—40 relative to

the PGL1 start codon ATG (Fig. 2) using the http://

bioinfo.md.huji.ac.il/marg/promec website [19, 43]. This

transcriptional initiation site is at an appropriate distance

for the -10 box (represented by the sequence 50-TATA-

AA-30) and the -35 box (represented by 50-TTCACA-30)
that are positioned at -59/-64 and -79/-85 nucleotides

relative to the ATG codon, respectively. The latter box is

separated by 15 nucleotides from the Pribnow box that is

found in the majority of E. coli promoters.

However, no consensus sequence for the ribosomal

binding site (RBS), usually known as the Shine–Dalgarno

site, was found in the PGL1 promoter (Fig. 2). Further,

no KdgR consensus binding site (50-AAATGAAACAn

TGTTTCATTT-30) is present within the DAL5/PGL1

intergenic region.

Modulation of the PGL1 promoter by GA, DGA,

and PGA

Modulation of the PGL1 promoter in E. coli DH5a [YE-

ppgX] and S. cerevisiae [YEppgX] by GA, DGA, and PGA

was investigated (Fig. 3a, b). For clarity, we report here

only results concerning the optimal concentrations of the

5′...ATTTTTTTTTTTGACGCTATTATTTAAAACCTAGGATATCCGTCCCATACAAAACGGCCACGAGT

TTCAATCCCAGAATGTACGAGTTATAATTCTCCTAGATGCATGATACTCGTGCATTCGTTTAACAAT

CATACCACTTTCCCATTTTCGGGATATTAAACATGAACATACTTTTTTACTGTGAGAATGTGGTTCA

CAATTATTCCATACAGGTATAAAAACGCACAGaAACGGGAAGACTATCTACCCACATTGATTGACA

AACGCAATGATTTATTCTAGAGTCGACGACCTGCAGGCATGCAAGCTTGCTCCC-3′

Fig. 2 Nucleotides sequence of the first 320 bp of the PGL1
promoter from S. cerevisiae X2180-1B strain (SGD Database). The

ATG codon is in bold. Predicted prokaryotic elements in the PGL1
promoter (http://www.fruitfly.org/seq_tools/promoter) indicate the

transcription start site in bold lowercase. The boxed elements repre-

sent the -10 (Pribnow-Schaller box) and -35 region within the

prokaryotic promoter. The sequence in bold and underlined represent

the TATA box usable in S. cerevisiae
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different carbon sources for each host. In preliminary

experiments, transformed E. coli and S. cerevisiae were

assayed for PGL1 promoter activity in basal media. For E.

coli, basal PGL1 promoter activity was 1.0 b-galactosidase

units and for S. cerevisiae basal PGL1 promoter activity

was 1.2 b-galactosidase units.

The addition of 50 or 75 mM of GA to E. coli DH5a
[YEppgX] or S. cerevisiae [YEppgX] cultures had no

significant effect on endoPG expression. Similarly, the

addition of PGA had no effect on b-galactosidase levels in

E. coli DH5a [YEppgX]. However, in sharp contrast, the

addition of PGA resulted in an increase of 2.2 b-galacto-

sidase units for S. cerevisiae [YEppgX], representing a

66% increase over the basal level. Following the addition

of 10 mM DGA, E. coli harboring the recombinant plasmid

produced 47 b-galactosidase units of activity. For

S. cerevisiae, 10 mM DGA induced a 3.91-fold increase in

PGL1 promoter activity (Fig. 3), indicating that this com-

pound can induce endoPG promoter activity in the both

organisms and that induction in E. coli was greater than in

S. cerevisiae. Since the PGL1 gene is derepressed in E. coli

by DGA transported into cells via endogenous KdgT [9].

PGL1 activity is regulated by oxygen availability

Under anaerobic conditions, b-galactosidase production in

transformed yeast was 2.05 b-galactosidase units compared

to 3.03 units under aerobic conditions. In contrast, E. coli

PGL1 promoter activity was 47 b-galactosidase units under

aerobic condition and 181 units under anaerobic condi-

tions. The discovery that aeration has opposing effects on

PGL1 promoter activity in E. coli and S. cerevisiae indi-

cates that different mechanisms of PGL1 promoter regu-

lation exist in these two systems.
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Fig. 3 Levels of b-galactosidase activity in the E. coli DH5a host

strain (a) and the S. cerevisiae host strain (b). b-Galactosidase activity

was measured in whole cells using the method of Kippert [19]

Transformed strains were grown in media supplemented with GA,

DGA, or PGA. b-galactosidase activity is given in arbitrary units

(U) as defined by Kippert [19]. Values are averages of at least three

experiments (colour figure online)
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Discussion

The 50-flanking sequences of some yeast genes have

already been shown to activate E. coli promoters. This

may be explained by the fact that these eukaryotic pro-

moters contain consensus sequences pertaining to pro-

karyotic-type promoter elements [25, 26]. In bacteria, the

most highly conserved promoter elements are the -10 and

-35 boxes, upstream of the transcriptional start site. For

RNA polymerase containing r70, canonic consensus

sequences for these elements are 50-TATAAT-30 and

50-TTGACA-30, respectively. It has also been established

that for 44% of prokaryotic promoters, the optimal length

of spacer region between the two boxes is 17 nucleotides

on average [5]. Some reports indicate that 95% of E. coli

promoters contain at least 3/6 conserved nucleotides

within the -10 consensus sequence [5, 34]. The -35

hexamer is not as well conserved as the Pribnow box,

since only 17% of prokaryotic promoters contain a -35

hexamer sequence with \50% identity. To date, no pro-

karyotic promoter has been identified that has intact

consensus sequences at both the -10 and -35 sites. This

study aimed to investigate whether S. cerevisiae PGL1

regulation is conserved in the heterologous host, E. coli,

thus demonstrating the interchangeability of the regula-

tory systems between both microorganisms, as had

previously been reported about for E. coli and E. chry-

santhemi [21]. However, we found that PGA did not

stimulate the exogenous PGL1 promoter in E. coli,

although it did stimulate the recombinant promoter in

S. cerevisiae. This may be explained by the presence of

extracellular depolymerizing endoPG in S. cerevisiae

that liberates DGA as a reaction product [4, 12]; in con-

trast, E. coli does not produce endoPG.

Some authors have reported in other microorganisms

that pectolytic enzymes are induced by the presence of

pectins [38, 41]. They claim that PGA is not expected to

penetrate cells and suggest that, instead of pectin, a cata-

bolic product (DGA or GA) is responsible for pectolytic

enzyme induction. We observed that b-galactosidase

expression in S. cerevisiae [YEppgX] is induced 2.5-fold in

the presence of 1% PGA (Fig. 3b). However, no such PGA

induction was observed for transformed E. coli (Fig. 3a).

This can be explained by the fact that yeast produces a

basal level of secreted endoPG activity, and that DGA

removed from the pectin substrate is responsible of the

induction of endoPG synthesis. In contrast, E. coli is

devoid of basal endoPG activity (data not shown) and no

PGA induction occurs. Thus, our findings reinforce the

previous hypothesis [38, 41]. We found that DGA is a

much more potent inducer of the PGL1 promoter than is

GA. This is logical because the PGL1 ORF encodes an

endoPG the major product of which is DGA, not GA [4],

and it is generally found that catabolic enzymes are spe-

cifically induced by compounds that are structurally similar

to their substrates.

As KdgR is present in the genome of all enterobacteria,

including E. coli, and as we have not detected a KdgR-binding

site in the DAL5/PGL1 intergenic region containing the PGL1

promoter, it is highly unlikely that the effect of KdgR on the

PGL1 gene is due to direct binding of KdgR to the PGL1

promoter. A more plausible hypothesis is that KdgR affects

PGL1 expression indirectly via another regulator.

Thus, we have demonstrated that the vector can function

as a dual expression plasmid in both prokaryotic and

eukaryotic hosts. The sequences of endoPG genes [31] and

the published crystal structures of bacterial and fungal

endoPG enzymes [39, 45] indicate that fungal endoPGs

possess four cysteines that are well conserved and impli-

cated in disulfide (S–S) bridges [45]. While the first two

cysteines should be present in all fungal endoPGs, they

may be absent from yeast endoPG [31]. Bacterial endoPG

has only the first two cysteines, but there is no conservation

of positions of these in all bacterial endoPGs. This suggests

that genes encoding endoPG in yeast have evolved simi-

larly to those in bacteria. Another interesting fact is that

most of the endoPG genes isolated from fungi such as

Aspergillus niger, A. awamori, A. flavus, and Colletotri-

chum lindemuthianum, possess introns [6, 36, 47]. Whereas

endoPG genes from yeast contain uninterrupted sequences

in their ORFs.

In addition, the endoPG promoter appears to have a

prokaryotic structure, as its expression is always stronger

in E. coli than in S. cerevisiae strains have low or no

endoPG activity despite the presence of the gene. On this

basis, we suggest that the endoPG gene may have been

transferred from bacteria to yeast during evolution and

that yeast endoPG may share their origins with those of

bacteria. Gene transfer from bacteria to yeast is common

[1, 13, 44]. Our suggestion is supported by the study [23],

who reported that two distantly related species, S. cere-

visiae and Helicobacter pylori, harbor a large complement

of evolutionarily conserved pathways, and that many of

these pathways appear to have duplicated and specialized

within yeast.

So far, only a few of endoPGs expressed in yeast or E.

coli have been reported, but they did not show higher

activity. Our data showed that activity could reach 180

units, which is 40-fold greater than the activity produced in

culture of S. cerevisiae, and greater than recombinant

protein expression reported by other researchers [48].
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